Views
O ano é 2050. Saia do Museu do Petróleo da Bacia do Permiano, no Estado americano do Texas, e dirija em direção ao norte atravessando a vegetação castigada pelo sol, onde algumas bombas de óleo remanescentes compõem a paisagem, e você vai se deparar com um palácio cintilante.
A terra aqui é espelhada: as ondas azul-prateadas de um imenso painel solar se estendem em todas as direções.
Ao longe, eles esbarram em uma parede cinza colossal de cinco andares de altura e quase um quilômetro de comprimento. Atrás deste muro, você avista as tubulações e pórticos de uma fábrica de produtos químicos.
Conforme você se aproxima, vê que a parede está se movendo — ela é inteiramente composta de ventiladores enormes que giram em caixas de aço. Parece um aparelho de ar-condicionado gigantesco, soprando em proporções inacreditáveis.
De certa forma, é exatamente isso. Você está olhando para uma usina de captura direta de ar (DAC, na sigla em inglês), uma das dezenas de milhares do tipo em todo o mundo. Juntas, elas estão tentando resfriar o planeta sugando dióxido de carbono do ar.
Esta paisagem texana ficou famosa pelos bilhões de barris de petróleo extraídos de suas profundezas durante o século 20. Agora, o legado desses combustíveis fósseis — o CO2 em nosso ar — está sendo bombeado de volta para os reservatórios vazios.
Se o mundo deseja cumprir as metas do Acordo de Paris de limitar o aquecimento global a 1,5 °C até 2100, paisagens como esta podem ser necessárias em meados do século.
Mas voltemos por um momento até 2021, para Squamish, na Província canadense de British Columbia, onde, em contraste com um horizonte bucólico de montanhas nevadas, estão sendo feitos os últimos retoques em um dispositivo do tamanho de um celeiro coberto com uma lona azul.
Quando entrar em operação, em setembro, o protótipo da usina de captura direta de ar da Carbon Engineering começará a remover 1 tonelada de CO2 do ar todos os anos.
É um pequeno começo, e uma usina um pouco maior no Texas está em andamento, mas esta é a dimensão típica de uma usina de DAC hoje.
"As mudança climática estão sendo causadas pelo excesso de CO2", diz Steve Oldham, executivo-chefe da Carbon Engineering. "Com a DAC, você pode remover qualquer emissão, em qualquer lugar, a qualquer momento. É uma ferramenta muito poderosa."
A maior parte da captura de carbono se concentra na limpeza das emissões na fonte: purificadores e filtros em chaminés que evitam que gases nocivos atinjam a atmosfera.
Mas isso é impraticável para pequenas e numerosas fontes pontuais, como os cerca de 1 bilhão de automóveis do planeta. Tampouco pode combater o CO2 que já está no ar. É aí que entra a captura direta.
Se o mundo quer evitar mudanças climáticas catastróficas, migrar para uma sociedade neutra em carbono não é suficiente.
O Painel Intergovernamental sobre Mudanças Climáticas (IPCC, na sigla em inglês) alertou que limitar o aquecimento global a 1,5 °C até 2100 exigirá tecnologias como a DAC para "implantação em larga escala de medidas de remoção de dióxido de carbono" — larga escala, neste caso, são vários bilhões de toneladas a cada ano.
O empreendedor Elon Musk prometeu recentemente US$ 100 milhões para desenvolver tecnologias de captura de carbono, enquanto empresas como Microsoft, United Airlines e ExxonMobil estão fazendo investimentos de bilhões de dólares nesta área.
"Os modelos atuais sugerem que vamos precisar remover 10 bilhões de toneladas, ou gigatoneladas, de CO2 por ano até 2050 e, no fim do século, esse número precisa dobrar", diz Jane Zelikova, cientista do clima da Universidade de Wyoming, nos Estados Unidos.
No momento, "não estamos removendo praticamente nada". "Precisamos começar do zero".
A usina da Carbon Engineering em Squamish foi projetada como uma plataforma de testes para diferentes tecnologias. Mas a empresa tem um projeto para uma usina muito maior nos campos de petróleo do oeste do Texas, que capturaria 1 milhão de toneladas de CO2 por ano.
"Uma vez que estiver pronto, é como uma forma, você simplesmente constrói réplicas dessa usina", diz Oldham.
Ele admite, no entanto, que o volume de trabalho pela frente é vertiginoso. "Precisamos extrair 800 gigatoneladas da atmosfera. Isso não vai acontecer da noite para o dia."
A ciência da captura direta de ar é simples. Há várias maneiras de fazer isso, mas o sistema da Carbon Engineering usa ventiladores para puxar ar contendo 0,04% de CO2 (níveis atmosféricos de hoje) por meio de um filtro embebido em solução de hidróxido de potássio — produto químico conhecido como potassa cáustica, usado na fabricação de sabão e vários outros produtos.
O hidróxido de potássio absorve CO2 do ar. O líquido é canalizado para uma segunda câmara e misturado com hidróxido de cálcio, a cal usada na construção civil, que se prende ao CO2 dissolvido, produzindo pequenos flocos de calcário.
Esses flocos são peneirados e aquecidos em uma terceira câmara, de calcinação, até que se decomponham, liberando CO2 puro, que é capturado e armazenado. Em cada etapa, os resíduos químicos são reciclados.
Com as emissões globais de carbono continuando a aumentar, a meta climática de 1,5 °C parece cada vez menos provável de ser alcançada sem intervenções como essa.
"O número de coisas que teriam que acontecer sem a captura direta de ar é tão extenso e variado que é altamente improvável que sejamos capazes de cumprir o Acordo de Paris sem ela", diz Ajay Gambhir, pesquisador sênior do Instituto Grantham para Mudança Climática da Universidade Imperial College London, no Reino Unido, e um autor de um artigo sobre o papel da DAC na mitigação do clima.
O IPCC apresenta alguns modelos de estabilização do clima que não dependem da captura direta de ar, mas Gambhir adverte que eles são "extremamente ambiciosos" em suas previsões sobre os avanços na eficiência energética e a disposição das pessoas em mudar seu comportamento.
"Passamos do ponto em que a redução das emissões precisava ocorrer", acrescenta Zelikova. "Estamos confiando cada vez mais na DAC."
A DAC está longe de ser a única maneira de o carbono ser retirado da atmosfera. Ele pode ser removido naturalmente por meio de mudanças no uso da terra, como o plantio de florestas.
Mas é algo lento e exigiria grandes extensões de terras valiosas — reflorestar uma área do tamanho dos Estados Unidos, segundo alguns estimam, e aumentar o preço dos alimentos em cinco vezes no processo.
E, no caso das árvores, o efeito da remoção do carbono é limitado, uma vez que elas acabarão morrendo e liberando o carbono armazenado, a menos que possam ser derrubadas e queimadas em um sistema fechado.
O tamanho do desafio para a remoção de carbono usando tecnologias como a DAC, em vez de plantas, não é menor.
O artigo de Gambhir calcula que simplesmente manter o ritmo das emissões globais de CO2 — atualmente, 36 gigatoneladas por ano — exigiria construir cerca de 30 mil usinas de DAC de larga escala, mais de três para cada central elétrica a carvão em operação no mundo hoje.
A construção de cada usina custaria até US$ 500 milhões — chegando a um custo de até US$ 15 trilhões.
Cada uma dessas unidades precisaria ser abastecida com solvente para absorver o CO2. O abastecimento de uma frota de usinas grande o suficiente para capturar 10 gigatoneladas de CO2 por ano vai exigir cerca de 4 milhões de toneladas de hidróxido de potássio, o equivalente a uma vez e meia todo o fornecimento anual global deste produto.
E uma vez que essas milhares de usinas forem construídas, elas também vão precisar de energia para funcionar.
"Se esta fosse uma indústria global absorvendo 10 gigatoneladas de CO2 por ano, você estaria gastando 100 exajoules, cerca de um sexto da energia global total", diz Gambhir.
A maior parte dessa energia é necessária para aquecer a câmara de calcinação a cerca de 800 °C — quente demais para a energia elétrica sozinha, então, cada planta de DAC precisaria de um aquecedor a gás e de uma boa fonte de gás.
As estimativas de quanto custa capturar uma tonelada de CO2 do ar variam amplamente, de US$ 100 a US$ 1 mil por tonelada.
Oldham diz que a maioria dos números é excessivamente pessimista — ele está confiante de que a Climate Engineering pode remover uma tonelada de carbono por apenas US$ 94, especialmente quando se tornar um processo industrial difundido.
Um problema maior é descobrir para onde enviar a conta. Incrivelmente, salvar o mundo acaba sendo algo muito difícil de vender, comercialmente falando.
A captura direta de ar resulta, no entanto, em uma mercadoria valiosa: milhares de toneladas de CO2 comprimido.
Isso pode ser combinado com o hidrogênio para produzir um combustível sintético neutro em termos de carbono. E poderia então ser vendido ou queimado nos aquecedores a gás da câmara de calcinação (onde as emissões seriam capturadas e o ciclo continuaria novamente).
Surpreendentemente, um dos maiores clientes do CO2 comprimido é a indústria de combustíveis fósseis.
À medida que os poços secam, não é incomum espremer o óleo restante do solo pressionando o reservatório usando vapor ou gás em um processo chamado recuperação aprimorada de petróleo.
O dióxido de carbono é uma escolha popular para isso e vem com o benefício adicional de reter esse carbono no subsolo, completando o estágio final de captura e armazenamento de carbono.
A Occidental Petroleum, que se associou à Carbon Engineering para construir uma planta de DAC em larga escala no Texas, usa 50 milhões de toneladas de CO2 todos os anos na recuperação aprimorada de petróleo.
Cada tonelada de CO2 usada dessa forma vale cerca de US$ 225 somente em créditos fiscais.
Talvez seja apropriado que o CO2 presente no ar acabe sendo devolvido ao subsolo dos campos de petróleo de onde veio, embora possa ser irônico que a única maneira de financiar isso seja buscando ainda mais óleo.
A Occidental e outras empresas esperam que, ao bombear CO2 no solo, possam reduzir drasticamente o impacto do carbono do petróleo: uma operação típica de recuperação aprimorada sequestra uma tonelada de CO2 para cada 1,5 tonelada que libera de óleo fresco.
Portanto, embora o processo reduza as emissões associadas ao petróleo, ele não equilibra as contas.
(BBC)